Bigger and Better Photons: The Road to Great FLIM?Results
原文鏈接 by Wolfgang Becker
翻譯 by 譚瓅
摘要:這篇文章試圖幫助bh FLIM技術(shù)的現(xiàn)有和未來用戶從FLIM實(shí)驗(yàn)中獲得最佳結(jié)果。第一部分解釋了TCSPC FLIM的原理,并給出了記錄的光子分布的效果。它表明,測(cè)量壽命的信噪比在優(yōu)先取決于記錄的光子數(shù)量。第二部分重點(diǎn)介紹優(yōu)化光子數(shù),而不增加施加到樣品中的光應(yīng)力。我們討論了激發(fā)功率、采集時(shí)間、采集效率、數(shù)值孔徑、聚焦精度、對(duì)準(zhǔn)精度和探測(cè)器效率的影響。第三部分將重點(diǎn)介紹光子效率。它考慮了TCSPC計(jì)時(shí)參數(shù)、計(jì)數(shù)背景、像素?cái)?shù)、儀器響應(yīng)函數(shù)的影響,以及多指數(shù)衰減函數(shù)的挑戰(zhàn)。最后一部分專門介紹數(shù)據(jù)分析。本文中的所有結(jié)論均通過在實(shí)際條件下記錄的真實(shí)測(cè)量數(shù)據(jù)進(jìn)行演示。
優(yōu)質(zhì)的FLIM圖像

圖1:BPAE樣品的FLIM圖像,2048 x 2048像素,衰減函數(shù)記錄在256個(gè)時(shí)間通道中。采用bh DCS-120 共聚焦 FLIM 系統(tǒng),bh SPCImage FLIM 數(shù)據(jù)分析軟件。
是什么造就了一個(gè)好的FLIM圖像?它應(yīng)該具有完美的空間分辨率、足夠高的像素?cái)?shù)、高對(duì)比度、低背景噪聲,沒有失焦模糊,并且它應(yīng)該以高信噪比顯示熒光壽命。如上圖所示。有經(jīng)驗(yàn)的FLIM用戶可能會(huì)補(bǔ)充說,僅僅記錄熒光壽命是不夠的,整個(gè)衰減函數(shù)應(yīng)該記錄在每個(gè)像素中。
為什么發(fā)表在科學(xué)論文中的FLIM圖像很少看起來像上面的圖像?這實(shí)際上沒有任何理由。所有要做的就是使用完美對(duì)準(zhǔn)的光學(xué)元件,正確的顯微物鏡,完美的聚焦,正確的激發(fā)和探測(cè)波長(zhǎng),正確的探測(cè)器以及一點(diǎn)點(diǎn)耐心。對(duì)FLIM的信號(hào)處理原理的一些理解也可能有所幫助,這些是每個(gè)FLIM用戶都可以實(shí)現(xiàn)的。
本文介紹了獲得出色的 FLIM 結(jié)果的重要因素,給出的大多數(shù)建議都是微不足道的。然而,差之毫厘,失之千里,正是這些瑣碎事物的總和,使得完美的FLIM結(jié)果區(qū)別于平庸的FLIM結(jié)果。
第一部分:TCSPC FLIM結(jié)果是光子的分布
TCSPC FLIM原理
追求完美FLIM結(jié)果的道路始于理解TCSPC FLIM結(jié)果是光子的分布,參考文獻(xiàn)[1]。記錄過程的基本原理如圖2所示。
通過高頻脈沖激光束掃描樣品,探測(cè)器探測(cè)發(fā)射的熒光單光子,并由TCSPC系統(tǒng)測(cè)量激光脈沖周期內(nèi)每個(gè)光子的到達(dá)時(shí)間t。同時(shí),TCSPC系統(tǒng)確定激光束在光子探測(cè)時(shí)刻的空間坐標(biāo)x,y。從這些數(shù)據(jù)中,光子在空間坐標(biāo)上和時(shí)間上的分布被建立起來。這種光子分布是期望的壽命圖像:它是x*y像素的數(shù)據(jù)陣列,每個(gè)像素都包含大量連續(xù)時(shí)間通道中的熒光衰減函數(shù)。參見圖 2右。記錄過程及其各種擴(kuò)展的詳細(xì)說明可以在文獻(xiàn)[2]中找到。

圖2:TCSPC FLIM原理
圖3給出了FLIM記錄的光子分布的效果。該圖顯示了 8 個(gè)水平 x 128 垂直像素的圖像區(qū)域。每個(gè)像素有256個(gè)時(shí)間通道,包含該像素的衰減數(shù)據(jù)。當(dāng)然,真實(shí)的FLIM圖像具有更高的像素?cái)?shù)。常規(guī)FLIM為采用256至1024個(gè)時(shí)間通道的512 x512像素的格式,并且已經(jīng)演示過采用256個(gè)時(shí)間通道的2048 x 2048像素的格式,參考文獻(xiàn)[2]。
對(duì)于沒有經(jīng)驗(yàn)的用戶來說,圖3中所示的分布可能看起來非常“嘈雜”:?jiǎn)蝹€(gè)像素中的熒光衰減幾乎看不見。當(dāng)然,這些“噪聲”不是由探測(cè)器或TCSPC電子設(shè)備的任何噪聲引起的,它只是一種光子統(tǒng)計(jì)的效應(yīng),噪聲如此之高的原因是光子分布在大量的像素和時(shí)間通道上。因此,每個(gè)像素的光子數(shù)都很低,特別是在每個(gè)像素中各個(gè)時(shí)間通道中的光子數(shù)更低。那么,如何降低光子分布中的“噪聲”呢?唯一的方法是記錄更多的光子,見圖4。

圖3:TCSPC FLIM的光子分布。該圖表示 X × Y = 8 × 128 像素的圖像區(qū)域,每個(gè)像素有256個(gè)時(shí)間通道,每個(gè)時(shí)間通道都包含熒光衰減周期內(nèi)連續(xù)時(shí)間的光子。

圖4:與圖3所示的光子分布相同,但記錄的光子多10倍,信噪比高出3.1倍,單個(gè)像素中的熒光衰減曲線清晰突出。
信噪比——SNR
從這些數(shù)據(jù)中得出的熒光壽命的信噪比是多少?我們從一個(gè)簡(jiǎn)單的實(shí)驗(yàn)中獲得答案。
根據(jù)定義,熒光壽命τ是分子保持在激發(fā)態(tài)的平均時(shí)間。當(dāng)一個(gè)分子發(fā)出一個(gè)光子時(shí),這意味著它從激發(fā)態(tài)返回基態(tài)。FLIM系統(tǒng)探測(cè)單個(gè)光子并測(cè)量它們相對(duì)于激發(fā)脈沖的時(shí)間t,如圖5 a和b。當(dāng)FLIM系統(tǒng)探測(cè)到大量這樣的光子時(shí),它們?cè)诩ぐl(fā)脈沖后到達(dá)探測(cè)器的平均時(shí)間是分子處于激發(fā)態(tài)的平均時(shí)間,即為熒光壽命,見圖5 c。雖然FLIM硬件通常不直接計(jì)算平均到達(dá)時(shí)間,但它存在于光子分布中。

圖5,a和b:光子的探測(cè)和激發(fā)后一段時(shí)間(t)內(nèi)光子隨時(shí)間的分布. c:探測(cè)N光子后的光子分布,激發(fā)后的平均到達(dá)時(shí)間<t>是熒光壽命τ. d:到達(dá)時(shí)間(t)的標(biāo)準(zhǔn)差σt,是熒光壽命τ。平均到達(dá)時(shí)間的標(biāo)準(zhǔn)差 στ 為 τ /SQRT(N).
平均到達(dá)時(shí)間的信噪比是多少?單個(gè)光子到達(dá)時(shí)間的標(biāo)準(zhǔn)偏差στ與熒光壽命τ本身相同,這是指數(shù)函數(shù)的性質(zhì)。如果我們平均大量( N 個(gè))光子的到達(dá)時(shí)間,則結(jié)果的標(biāo)準(zhǔn)偏差στ隨N的平方根而減小,請(qǐng)參見圖5,d。因此,探測(cè)到N個(gè)光子后的信噪比,即τ除以其標(biāo)準(zhǔn)偏差στ的比值為:
SNRτ = τ / στ = SQRT (N)
這意味著可以獲得熒光壽命的標(biāo)準(zhǔn)偏差只是衰減曲線中光子數(shù)量的平方根,參考文獻(xiàn)[17],這在幾個(gè)方面是一個(gè)了不起的結(jié)果。首先,像素壽命的信噪比與像素強(qiáng)度的信噪比相同,這否定了FLIM比穩(wěn)態(tài)成像需要更多的光子(因此需要更多的采集時(shí)間)的普遍觀點(diǎn)。其次,信噪比僅取決于N,特別是,不依賴于記錄熒光衰減的時(shí)間通道數(shù)。換句話說,您可以增加時(shí)間通道的數(shù)量,以提高時(shí)間分辨率或減少采樣偽影,而不會(huì)影響信噪比。第三,由于SNR僅依賴于N,因此提高壽命精度的唯一方法是增加N。這意味著你要么必須減少像素的數(shù)量 – 你通常不希望 – 或者記錄更多的光子。記錄更多光子是獲得良好FLIM結(jié)果的關(guān)鍵,也是下一部分的主題。
光子分布的一階矩
如上所述,單指數(shù)衰減(或單指數(shù)衰減近似)的熒光壽命可以通過計(jì)算光子的平均到達(dá)時(shí)間來獲得。如果光子的單個(gè)到達(dá)時(shí)間不可用,則可以通過從完整的光子分布中計(jì)算“一階矩” M1 (參考文獻(xiàn)[18])獲得平均到達(dá)時(shí)間:

上述等式中的時(shí)間t,是光子在FLIM系統(tǒng)的觀測(cè)時(shí)間間隔內(nèi)的時(shí)間,而不是從激發(fā)脈沖之后的時(shí)間。因此,必須減去激發(fā)時(shí)間(在實(shí)踐中是IRF的一階矩)才能得到熒光壽命τ:
τ = M1fluorescence ?M1IRF
該方法如圖2所示。藍(lán)點(diǎn)是各個(gè)時(shí)間通道中的光子數(shù),綠色曲線是IRF,紅色曲線是通過用IRF卷積指數(shù)函數(shù)e-t/τ來計(jì)算的假設(shè)熒光衰減函數(shù)。

圖6:熒光壽命的一階矩計(jì)算,熒光壽命是熒光的一階矩和IRF的一階矩的差值。
一階矩技術(shù)以理想的信噪比提供單指數(shù)衰減的時(shí)間。但是,它不會(huì)提供多指數(shù)衰減函數(shù)的參數(shù),并且如果記錄包含背景計(jì)數(shù),或只有一部分衰減函數(shù)位于TCSPC系統(tǒng)的觀測(cè)時(shí)間間隔內(nèi),則它不會(huì)提供正確的衰減時(shí)間。因此,它幾乎完全被曲線擬合技術(shù)所取代。然而,一階矩技術(shù)有其優(yōu)點(diǎn):它可在非常低的光子數(shù)下可靠地工作,適用于在線FLIM應(yīng)用中的快速壽命測(cè)定,最重要的是,它提供了一種在理想和非理想條件下估計(jì)FLIM信噪比的方法。我們將在本文的后面部分使用到此方法。
SQRT(N)關(guān)系的實(shí)驗(yàn)驗(yàn)證如圖7所示。以不同的采集時(shí)間掃描染料溶液,以獲得每像素包含約200,1600和9000個(gè)光子的FLIM圖像。典型的衰減曲線如圖7的頂行所示。第二行顯示了單個(gè)像素中熒光壽命的直方圖,它是用一階矩分析獲得的,στ 值和σ/τ = SNR 值在直方圖中顯示。從這些值可以看出,σ/τ確實(shí)非常接近于SQRT(N)。圖 7 的底行顯示了通過 MLE(最大似然估計(jì))擬合獲得的壽命直方圖。從MLE擬合獲得的壽命直方圖比從矩分析中獲得的直方圖要寬一些,而且MLE結(jié)果也接近SQRT(N)的理想信噪比。

圖 7:SQRT (N) 關(guān)系的驗(yàn)證。頂行:來自羅丹明110染料溶液的FLIM數(shù)據(jù)單個(gè)像素的衰減曲線。從左到右:N = 200個(gè)光子,N = 1600個(gè)光子,N = 9000個(gè)光子。第二行:通過一階矩方法分析獲得的壽命直方圖。底行:通過 MLE 分析獲得的壽命直方圖。
光子效率
探測(cè)到光子并不一定意味著它有效地有助于壽命測(cè)量的準(zhǔn)確性。它可能因TCSPC模塊中不適宜地選擇的計(jì)時(shí)參數(shù)而丟失,其探測(cè)時(shí)間可能因探測(cè)器傳輸時(shí)間的不確定性而受損,或者可能存在來自背景信號(hào)的光子給光子分布增加額外的噪聲。在所有這些情況下,獲得的壽命的SNR都小于理想值SQRT(N)。這種情況可以用“光子效率”E來描述。E的倒數(shù)表示與理想系統(tǒng)相比,非理想系統(tǒng)需要多少光子才能達(dá)到相同的信噪比。由于SNR與光子數(shù)的平方根成比例,光子效率也可以寫為
E = (SNRreal / SNRideal)2
光子效率E是“品質(zhì)因數(shù)”的平方,有時(shí)用于比較不同壽命測(cè)量技術(shù)的效率(參考文獻(xiàn)[10,16])。正確配置的TCSPC系統(tǒng)在最佳條件下工作,其光子效率接近1,達(dá)到理想的光子效率將是“最大化光子效率”這一部分的主題。
References
1. W. Becker, Advanced time-correlated single-photon counting techniques. Springer, Berlin, Heidelberg, New York,2005
2. W. Becker, The bh TCSPC handbook, 8th edition. Becker & Hickl GmbH (2019), available online on www.becker-hickl.com. Please contact bh for printed copies.
3. SPCImage NG data analysis software. In: W. Becker, The bh TCSPC handbook, 8th edition. Becker & Hickl GmbH(2019)
4. W. Becker (ed.), Advanced time-correlated single photon counting applications. Springer, Berlin, Heidelberg, New York (2015)
5. Becker & Hickl GmbH, DCS-120 Confocal and Multiphoton Scanning FLIM Systems, user handbook 87th ed. (2019).?Available on www.becker-hickl.com
6. Becker & Hickl GmbH, Modular FLIM systems for Zeiss LSM 510 and LSM 710 family laser scanning microscopes.?User handbook. Available on www.becker-hickl.com
7. Becker & Hickl GmbH, FLIM systems from Zeiss LSM 980 Laser scanning microscopes, addendum to modular FLIM?systems for Zeiss LSM 510 and LSM 710 family laser scanning microscopes. Available on www.becker-hickl.com
8. Fast-Acquisition TCSPC FLIM: What are the Options? Application note, available from www.becker-hickl.com
9. W. Becker, V. Shcheslavkiy, S. Frere, I. Slutsky, Spatially Resolved Recording of Transient Fluorescence-Lifetime?Effects by Line-Scanning TCSPC. Microsc. Res. Techn. 77, 216-224 (2014)
10. R.M. Ballew, J.N. Demas, An error analysis of the rapid lifetime determination method for the evaluation of single?exponential decays, Anal. Chem. 61, 30 (1989)
11. W. Becker, B. Su, K. Weisshart, O. Holub, FLIM and FCS Detection in Laser-Scanning Microscopes: Increased?Efficiency by GaAsP Hybrid Detectors. Micr. Res. Tech. 74, 804-811 (2011)
12. Wolfgang Becker, Cornelia Junghans, Axel Bergmann, Two-photon FLIM of mushroom spores reveals ultra-fast decay component. Application note, available on www.becker-hickl.com.
13. Becker & Hickl GmbH, Ultra-fast HPM detectors improve NADH FLIM. Application note, www.becker-hickl.com
14. Becker & Hickl GmbH, Two-Photon FLIM with a Femtosecond Fibre Laser. Application note, www.becker-hickl.com
15. Becker Wolfgang, Suarez-Ibarrola Rodrigo, Miernik Arkadiusz, Braun Lukas, Metabolic Imaging by Simultaneous?FLIM of NAD(P)H and FAD. Current Directions in Biomedical Engineering 5(1), 1-3 (2019)
16. H.C. Gerritsen, M.A.H. Asselbergs, A.V. Agronskaia, W.G.J.H.M. van Sark, Fluorescence lifetime imaging in?scanning microscopes: acquisition speed, photon economy and lifetime resolution, J. Microsc. 206, 218-224 (2002)
17. M. K?llner, J. Wolfrum, How many photons are necessary for fluorescence-lifetime measurements?, Phys. Chem. Lett.?200, 199-204 (1992)
18. I. Isenberg, R.D. Dyson, The analysis of fluorescence decay by a method of moments. Biophys. J. 9, 1337-1350 (1969)
